
LLNL-CONF-681383

Investigation of Portable Event-Based
Monte Carlo Transport Using the NVIDIA
Thrust Library

R. C. Bleile, P. S. Brantley, S. A. Dawson, M. J.
O'Brien, H. Childs

January 27, 2016

2016 American Nuclear Society Annual Meeting
New Orleans, LA, United States
June 12, 2016 through June 16, 2016



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



Investigation of Portable Event-Based Monte Carlo Transport Using the NVIDIA Thrust Library

Ryan C. Bleile∗,†, Patrick S. Brantley∗, Shawn A. Dawson∗, Matthew J. O’Brien∗, Hank Childs†

∗Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551
†Department of Computer and Information Science, University of Oregon, Eugene, OR 97403

bleile1@llnl.gov, brantley1@llnl.gov, dawson6@llnl.gov, obrien20@llnl.gov, hank@uoregon.edu

INTRODUCTION

Power consumption considerations are driving future
high performance computing platforms toward many-core
computing architectures. Los Alamos National Labora-
tory’s Trinity machine, available in 2016, will use both Intel
Xeon Haswell processors and Intel Xeon Phi Knights Land-
ing many integrated core (MIC) architecture coprocessors.
Lawrence Livermore National Laboratory’s Sierra machine,
available in 2018, will use an IBM PowerPC architecture
along with Nvidia graphics processing unit (GPU) architec-
ture accelerators. These different advanced architectures
make the computing landscape in upcoming years complex.

Traditional approaches to Monte Carlo transport do not
work efficiently on these new computing platforms. MIC
architectures require vectorization to operate efficiently, and
vectorization is difficult to achieve in Monte Carlo transport.
GPU architectures require additional code to explicitly use
the hardware, requiring significant code changes or hard-
ware specific branches in the source code. A significant
challenge for Monte Carlo transport projects is to simulta-
neously support within a single source code base efficient
simulations for both the current generation of architectures
and the different advanced computing architectures.

In order to address these challenges, two important
changes are typically required: a new algorithmic approach
for solving Monte Carlo transport, and explicit use of hard-
ware specific software. In this paper, we describe initial
research investigations of an event-based Monte Carlo trans-
port algorithm [1] implemented using the Nvidia Thrust
library [2] on a GPU for a Monte Carlo test code. The
event-based algorithm targets many-core architectures by in-
creasing SIMD (single instruction multiple data) parallelism,
while Thrust potentially provides portable performance by
allowing one source code base to compile code targeted for
both CPUs and GPUs.

HISTORY-BASED APPROACH

For this research, we began with the ALPSMC Monte
Carlo test code [3] that models particle transport in a one-
dimensional planar geometry binary stochastic medium.
The ALPSMC code was originally implemented in C++
using a standard history-based Monte Carlo transport algo-
rithm, as shown in Alg. 1. This approach follows a single
particle from creation until it is absorbed or leaked. Par-
allelism is easily achieved by parallelizing over particle
histories (foreach loop on Line 1), with each thread working
independently on a single particle at a time. This approach
uses a MIMD (multiple instruction multiple data) paral-
lelism scheme, as opposed to vectorization.

Algorithm 1: History-based Monte Carlo algorithm

1 foreach particle history do
2 generate particle from boundary condition or

source
3 while particle not escaped or absorbed do
4 sample distance to collision in material
5 sample distance to material interface
6 compute distance to cell boundary
7 select minimum distance, move particle, and

perform event
8 if particle escaped spatial domain then
9 update leakage tally

10 end particle history

11 if particle absorbed then
12 update absorption tally
13 end particle history

EVENT-BASED APPROACH

Previous researchers [4, 5, 6] have noted that the use
of an event-based Monte Carlo particle transport algorithm
[1] may be beneficial for GPU or vector-based architec-
tures. We investigated this idea through the event-based
algorithm shown in Alg. 2 as a way to potentially opti-
mize performance on GPU and vector-type architectures.
In event-based particle tracking, the individual events can
be treated by a series of data parallel operations. The data
parallel model matches the vector and GPU hardware with
an emphasis on performing the same operations on many
pieces of data at one time through SIMD parallelism.

Thrust

Thrust is a C++ header library using a STL-like tem-
plate interface [2]. Thrust provides a number of parallel
algorithms and data structures designed to provide access to
GPU computing without needing to write CUDA code [7].
Additionally, Thrust provides backend capabilities allowing
these algorithms and data structures to target different de-
vices, including CPUs with OpenMP threads. This design
was used for studying portable performance techniques with
Thrust, providing a method of maintaining only one source
code.

Thrust algorithms are used for implementing proce-
dures across all particles in a batch. These algorithms per-
form operations such as the data parallel map, reduce, gather,
scatter, or scan operations defined in [8]. Each of these op-
erations can be performed in a data parallel way.



Algorithm 2: Event-based Monte Carlo algorithm

1 foreach batch of particle histories (fits in memory
constraint) do

2 generate all particles in batch from boundary
condition or source

3 determine next event for all particles (collision,
material interface crossing, cell boundary
crossing)

4 while particles remaining in batch do
5 foreach event E in (collision, material

interface crossing, cell boundary crossing)
do

6 identify all particles whose next event is
E

7 perform event E for identified particles
and determine next event for these
particles

8 if particle escaped spatial domain then
9 update leakage tally

10 if particle absorbed then
11 update absorption tally

12 delete particles absorbed or leaked

Thrust also provides data types that can be used to man-
age memory for GPU devices. The thrust::device_vector
and thrust::host_vector data structures operate similarly to
a C++ std::vector but with automatic memory copying be-
tween host and devices whenever necessary. These data
types allow for simple memory management schemes that
work on both GPU and CPU based architectures.

Algorithm Detail

An event-based algorithm focuses on performing data
parallel operations across all particles undergoing the same
event. Additional overhead is needed to find the grouping of
particles that will be operated on and to determine an access
pattern for the particles. This reorganization stage can be
costly and is not directly related to solving the transport
problem.

Thrust provides permutation iterators that allow for the
unaligned access of data elements according to an index
map. Using this iterator scheme, data elements do not need
to be copied into new locations for each operation. This
approach comes at the cost of performing non-contiguous
memory accesses for reading and writing the information.

In order to perform an event operation on particles using
this scheme, a series of data parallel operations is used to
establish the correct index mapping for the permutation
iterator. This scheme is defined as follows and describes in
detail lines six and seven of Alg. 2:

Step 1: thrust::transform — Fill out a stencil map of 1’s and
0’s of all particles doing event E (where each particle
whose next event is E will get a 1 in the stencil map at
its index location)

Step 2: thrust::reduce — Count the number of elements labeled
1 in the stencil (determines the number of particles that
will perform event E)

Step 3: Check if the number of elements is greater than 0
(check if any particles are performing event E)

Step 4: thrust::exclusive_scan — generate indices for index
mapping from stencil map (indices for each particle
performing event E)

Step 5: Allocate a new map of appropriate size (map to hold
indices for all particles performing event E)

Step 6: Scatter indexes from scan into new index map (reduces
the exclusive_scan generated indices into the map that
holds only enough for particles performing event E)

Step 7: Use new index map in permutation_iterator loops over
all particles (combining the index map with the permu-
tation iterator allows loops over all particles to operate
only on the particles selected in the index map)

Related Work

Other researchers have recently performed related work
implementing event-based algorithms on GPUs [4, 5, 6].
Comparing and contrasting our event-based method to theirs
shows differences both in our approaches, target problem,
and the way chosen to create data parallelism. While their
research first studied the idea of event-based Monte Carlo
on GPUs, our research studies event-based Monte Carlo in
the light of the portable performance platform of Thrust as
well as an algorithm designed around performing only data
parallel operations.

The research performed by Bergmann et. al [6] with
WARP is most closely related to our work. We both imple-
mented an algorithm that performs a series of operations on
the GPU in a single loop over particles still active. Addition-
ally, we both implemented a remapping vector to identify
particles for a task without copying them. While in WARP
the remap vector is then sorted so that particles will most
likely be close in memory to other particles undergoing the
same operation, in our implementation only particles that
will undergo the same event are called in one kernel. Addi-
tionally, our remap vector does no sorting and only identifies
whether particles will undergo a specific event. In this way,
we implemented our event-based model as a series of data
parallel calls with Thrust. Each of our calls has almost no
divergence except when deciding if a particle leaked or was
absorbed.

The work done by Liu et al [5] within ARCHER to test
an event-based model differs from our work algorithmically.
Liu et. al did use Thrust for some operations but chose to
make the important kernels CUDA only. Additionally, Liu’s
algorithm used a double while loop focusing all attention
on one event and then switching to the other, making their
code have two events to consider.

The work done by Nelson [4] is related in the attempt
to use and optimize performance on a GPU, but event-based
methods were not considered in that work.



IMPLEMENTATIONS

We implemented the event-based version of ALPSMC
using both the Nvidia CUDA programming model [7] ex-
plicitly and the Nvidia C++ Thrust library [2]. The Thrust
implementation of ALPSMC utilizes data parallel opera-
tions and Thrust data types for managing memory. The
same Thrust event-based implementation can be compiled
with either CUDA for use on GPUs or OpenMP for use on
CPUs, enabling portability to different platforms. In the
native CUDA implementation of ALPSMC, we found it use-
ful to continue to use Thrust algorithms in building various
maps. ALPSMC is implemented using double precision
floating point numbers throughout. The Thrust and CUDA
implementations of ALPSMC give physics results identical
to the original history-based implementation.

The CUDA implementations for this study matched the
algorithm in the Thrust implementations. The differences in
performance come from the capabilities that native CUDA
programming provide that cannot be accomplished with
Thrust. Using CUDA directly enables more fine-grained
control at the kernel level and enables important access
to different memory spaces such as GPU shared memory.
The CUDA implementation includes a scheduling algorithm
to optimize the number of active threads on the GPU for
each kernel call. Additionally, the CUDA implementation
includes the use of the different available memory spaces,
such as constant and shared memory. For example, Monte
Carlo particles were initially allocated in GPU global mem-
ory and then copied to shared memory for all operations
within a kernel. All problem constants such as cross sec-
tions and mean chord length values were placed in GPU
constant memory. These optimizations under certain condi-
tions can have a significant impact on the performance of a
GPU kernel.

NUMERICAL RESULTS

We performed scaling studies in which we varied the
number of Monte Carlo particle histories (problem size) and
the implementation methodology (Thrust or CUDA). The
results presented are for Case 1a [3] with a spatial domain
of 10 cm. We also examined the differences in performance
on three different computer platforms. The Rzgpu computer
has Intel Xeon Westmere-EP 2.8 GHz host cores with Nvidia
Tesla M2070 GPU device accelerators. The Max computer
has Intel Sandy Bridge 2.6 GHz host cores with Nvidia
Tesla K20X GPU device accelerators. The Tesla K20X GPU
has improved double precision performance over the Tesla
M2070. The Rzhasgpu computer has Intel Xeon Haswell
3.2 GHz host cores with Nvidia Tesla K80 GPU device
accelerators. We did not use a multiple GPU implementation
and were therefore only able to utilize approximately half
of the computational power of the Nvidia Tesla K80s.

Our first study aimed to identify the speedups of our
event-based algorithm when compared to the initial serial
history-based implementation. We computed speedups over
a serial calculation by dividing the wall clock time of a
serial run of the history-based version of ALPSMC on the
host core of the given machine by the wall clock time of the
event-based version of ALPSMC running on both a single

host CPU and the GPU device. The speedups obtained on
each computing platform are shown in Table I.

TABLE I: ALPSMC Event-Based Monte Carlo GPU
Speedups Over Serial History-Based Application

Number Particle Histories
106 107 108

CUDA (K20X) 5.90 11.88 11.91
CUDA (1/2 K80) 4.88 10.49 10.51
CUDA (M2070) 3.96 6.05 6.05
Thrust (K20X) 2.11 2.60 2.60

Thrust (1/2 K80) 1.77 2.17 2.17
Thrust (M2070) 1.42 1.64 1.63

Thrust OpenMP Event 2.54 2.15 2.22

For this test, the Thrust implementation produces
speedups ranging from approximately 1.4 to 2.6. There-
fore, while the Thrust library potentially provides an ap-
proach to obtaining a portable implementation, it does not
produce the significant speedups we would expect on the
GPU hardware. For this test, the speedups obtained using
the CUDA implementation of the event-based algorithm are
significantly larger than those obtained using the Thrust im-
plementation by up to over a factor of four. We attribute this
improved performance to the fact that CUDA offers more
control over the memory spaces available on the GPU (e.g.
shared memory) when operating on large kernels that per-
form multiple read/write actions. Thrust does not offer such
flexibility and manages the memory allocation internally.
We conclude based on these preliminary investigations that a
direct CUDA implementation is more efficient than a Thrust
implementation for event-based Monte Carlo. Also, the
speedups on the Max platform (Tesla K20X GPU) are larger
than on the Rzgpu platform (Tesla M2070 GPU) by up to
a factor of approximately two, presumably a result of the
improved double precision performance of the K20X. Fur-
thermore, the Rzhasgpu platform (Tesla K80 GPU) shows
similar performance to the Max platform (K20X GPU); we
can assume around twice the performance were we to mod-
ify the research code to fully utilize all of the available K80
hardware.

The same Thrust event-based code implementation
was compiled with OpenMP for use on the host CPU,
demonstrating the portability of the Thrust implementation.
The scaling study was repeated on Rzhasgpu’s Intel Xeon
Haswell CPUs with OpenMP using 16 threads/cores. The
CPU performs similar to the GPU when Thrust is used to
gain parallelism, with speedups of approximately 2.2. Using
16 OpenMP threads, we would expect a significantly larger
speedup for Monte Carlo particle transport. Since the same
code base is used with Thrust on both the CPU and the GPU,
we can see the potential that exists for a single code base
on multiple platforms. For this particular example, however,
significantly higher performance is achieved using the na-
tive choice of the CUDA event-based implementation for
the GPU.



We performed a second more extensive scaling study
varying the number of particle histories for the Thrust and
CUDA event-based versions and the serial history-based
version on Rzhasgpu (Tesla K80 GPU). The results of the
scaling study are shown in Figure 1. We can see that both
the Thrust and CUDA event-based versions have signifi-
cantly higher overhead than the serial history-based version
at low numbers of particle histories. But at a higher number
of particle histories (starting at approximately 105 particle
histories), the event-based versions of the code begin outper-
forming the serial history-based versions. We also observe
that the performance gains of the CUDA version over the
Thrust version start to become significant at higher numbers
of particle histories.

Fig. 1: Log-log plot of wall clock time versus number of
particles for different versions of the code

The linear behavior observed at the higher particle his-
tory counts is a result of the particle batching scheme we
used to avoid exhausting GPU device memory. Once the
batching begins, we no longer gain any additional perfor-
mance increases. At that point, the only performance im-
provement possible would be to process a greater number of
particle histories, and that number is hardware dependent.

CONCLUSIONS

We described preliminary investigations of portable
event-based Monte Carlo algorithms implemented using the
Nvidia Thrust library in a research Monte Carlo test code.
We found that an explicit CUDA implementation of an event-
based Monte Carlo algorithm performed significantly more
efficiently than a Thrust implementation on GPU platforms,
most likely as a result of additional flexibility in access
to different memory spaces on the GPU. Additionally, we
showed that on GPU platforms and at large enough problem
sizes the event-based implementations perform more effi-
ciently than the serial history-based implementation running
on the host CPU.

While investigating this problem, we also discovered
that the performance of the event-based algorithm is af-
fected by what tallies are being used. A zonal scalar flux
tally requires atomic operations that significantly impacted
the performance of the code, in some cases producing slow-
downs instead of speedups. We decided to remove the tally
in order to focus on the effectiveness of the event-based
algorithm. Future work will be required to research more

effective ways of handling such tallies. Additionally, we
would like to consider new ways for optimizing both the
Thrust and CUDA versions, in order to see how much per-
formance we have yet to achieve.

The potential trade-off between portability and perfor-
mance was demonstrated in this investigation. Thrust pro-
vides both CPU and GPU versions of the code in one code
base, but it does so at a cost. We discovered approximately
a factor of 2-5 performance difference between Thrust and
CUDA on each GPU platform we tested. Thrust provides a
tool to access the GPUs with less effort and specialization,
but it does so by giving up fine grained control where extra
performance can be found for this application. Future work
will be required to determine whether this performance dif-
ferential between Thrust and CUDA can be reduced for
event-based Monte Carlo transport.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. Funding
was provided by the LLNL Livermore Graduate Scholar
Program.

REFERENCES

1. F. B. BROWN and W. R. MARTIN, “Monte Carlo Meth-
ods for Radiation Transport Analysis on Vector Comput-
ers,” Progress in Nuclear Energy, 14, 269–299 (1984).

2. “Thrust Web Site,” (2014),
https://developer.nvidia.com/Thrust.

3. P. S. BRANTLEY, “A Benchmark Comparison of Monte
Carlo Particle Transport Algorithms for Binary Stochas-
tic Mixtures,” Journal of Quantitative Spectroscopy and
Radiative Transfer, 112, 599–618 (2011).

4. A. G. NELSON, Monte Carlo Methods for Neutron
Transport on Graphics Processing Units Using CUDA,
M.S. Thesis, The Pennsylvania State University (2009).

5. T. LIU, X. DU, W. JI, X. G. XU, and F. B. BROWN, “A
Comparative Study of History-Based Versus Vectorized
Monte Carlo Methods in the GPU/CUDA Environment
for a Simple Neutron Eigenvalue Problem,” in “Proceed-
ings of Supercomputing in Nuclear Applications and
Monte Carlo (SNA+MC),” Paris France (October 27-31,
2013 2013).

6. R. M. BERGMANN and J. L. VUJIC, “Algorithmic
Choices in WARP - A Framework for Continuous Energy
Monte Carlo Neutron Transport in General 3D Geome-
tries on GPUs,” Annals of Nuclear Energy, 77, 176–193
(2015).

7. “CUDA Web Site,” (2014),
http://www.nvidia.com/object/cuda_home_new.html.

8. G. E. BLELLOCH, Vector models for data-parallel com-
puting, vol. 356, MIT press Cambridge (1990).


